
Hive Wireless Sensor Network
Release alpha

Simon Filhol, Pierre-Marie Lefeuvre

Nov 09, 2021

CONTENTS:

1 Introduction 1
1.1 Deployed Network . 1

1.1.1 Finse, Norway . 1
1.1.2 Norwegian Permafrost Borehole . 2
1.1.3 Ny-Ålesund, Svalbard Archipelago . 2

1.2 Financial Support . 4

2 Hardware Description 5
2.1 Version 1, 2019 . 5
2.2 Version 2, 2021 . 5
2.3 Sensors . 6

3 Database System Description 7
3.1 Download Data from SIOS Dataportal . 7
3.2 Download Data Directly from the UiO Django App . 7

3.2.1 Through Grafana . 7
3.2.2 Through http request . 8
3.2.3 Matlab Query Example . 12

4 Data Access and Processing 15

5 Svalbard Network 17
5.1 Stations Available . 18

5.1.1 Midtre Løvenbreen . 18
5.1.2 Kongsvegen . 19

6 Indices and tables 21

i

ii

CHAPTER

ONE

INTRODUCTION

Welcome to the documentation of the Hive Wireless Sensor Network (Hive WSN) system developed at Department of
Geosciences of the University of Oslo. The Hive WSN consists of a system to collect data in remote and cold regions
using the technology available thanks to the Internet of Things (IoT) industry. This system is build to the maximum
extent on open-source technology .

This documentation intends to provide as much information as possible on the functionning of the entire system for
transparency towards the end user of the data. You will find a section describing the hardware

1.1 Deployed Network

We currently have two test sites, one in mainland Norway, and another one in Ny-Ålesund, Svalbard. Data from the
network in Svalbard will be available freely through the SIOS portal.

1.1.1 Finse, Norway

The network in Finse is primarily a test ground for the equipment before being send elsewhere. The network is spread
around the research station of Finse.. Data are available upon request.

Due to the very harsh weather, the network is currently partly functionning.

1

https://www.finse.uio.no/

Hive Wireless Sensor Network, Release alpha

1.1.2 Norwegian Permafrost Borehole

Hive WSN stations equip 4 permafrost borehole spread across the norwegian mountains to record ground temperatures.

1.1.3 Ny-Ålesund, Svalbard Archipelago

Our largest network is deployed aroud the region of Ny-Ålesund in Svalbard. It is currently spread over two glaciers
Kongsvegen, and Midtre-Løvenbreen (aka. two sub networks). The networks are pushing data to the servers

General view

2 Chapter 1. Introduction

Hive Wireless Sensor Network, Release alpha

Kongsvegen glacier sub network as of 2021:

1.1. Deployed Network 3

Hive Wireless Sensor Network, Release alpha

Midtre Løven glacier sub-netwrok as of 2021:

1.2 Financial Support

This development is supported by the eInfrastructure hub UiO Hive, and implemented to collect data on the archipelago
of Svalbard in collaboration with the Norwegian Polar Institute. Additional support from SIOS.

4 Chapter 1. Introduction

https://www.mn.uio.no/geo/english/research/projects/hive/
https://www.npolar.no/en/
https://sios-svalbard.org/

CHAPTER

TWO

HARDWARE DESCRIPTION

The HiveWSN kit consists of

1. a brain box containing the powser system, the microcontroller, the communication system and the connectivity
to the sensors.

2. a set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part
of the UiO Hive project.

[include a photo]

The kit is autonomous and packaged as a beam that can be installed on simple mast. The suite of sensors if customizable
and depends on the puporse of the project. The main limitations in including new sensors are the communication
protocol in between the microcontroller and the sensor, and the power management.

Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board
Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been
written as part of the project UiO Hive, and include a set of tools described in the software section.

2.1 Version 1, 2019

Version 1 is the first formalized version of the Hive system. It includes a range of solution in terms of sensors, com-
munication protocol, and embedded resilience system.

[include photo]

2.2 Version 2, 2021

Version 2 is an upgraded version which includes a number of improvements like new sensors, larger solar panel and
enclosure, an added microcontroller to control sensors only. This version was made compatible with the Lora radio
network solution, with its own libraries to perform tree topology with Lora radios.

[include photo]

5

https://www.mn.uio.no/geo/english/
https://www.mn.uio.no/geo/english/research/projects/hive/

Hive Wireless Sensor Network, Release alpha

2.3 Sensors

The sensors used on the stations are the following:

Sensor name Sensor type Version Datasheet
VL53L1 Lidar v1, v2 Datasheet
MLX90614 IR Thermal IR v1, v2 Datasheet
VEML7700 Ambient light v2 Datasheet
AS7341 Spectrometer v2 Datasheet
VCNL-4040 Proximity NIR sensor v2 Datasheet
BME280 Temperature, humidity, pressure v1, v2 Datasheet
TMP117 Temperature v2 Datasheet
TMP102 Temperature v1 Datasheet
SHT31 Temperature, humidity v2 Datasheet
ATMOS 22 Wind, temperature v1, v2 Datasheet
CTD 10 Water temperature, pressure, conductivity v1, v2 Datasheet
DS18B20 Temperature v1, v2 Datasheet
MB7389 Temperature v1, v2 Datasheet

All sensors use digital comminucation protocols such as I2C, SDI-12, or One-Wire.

Sampling can be set to any time intervals, though in most cases all sensors are sampled every 10 minutes as a trade of
for temporal granularity and power saving. All data is associated to its ampling time.

6 Chapter 2. Hardware Description

https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/veml7700.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/MLX90614-Datasheet-Melexis.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/veml7700.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/AS7341_DS.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/vcnl4040.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/bst-bme280-ds002.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/tmp117.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/tmp102.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/sht31_datasheet.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/ATMOS%2022.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/CTD-10.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/DS18B20.pdf
https://github.com/UiOHive/Hive-Wireless-Sensor-Network/blob/main/attachments/HRXL-MaxSonar-WR_Datasheet.pdf
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/SDI-12
https://en.wikipedia.org/wiki/1-Wire

CHAPTER

THREE

DATABASE SYSTEM DESCRIPTION

The General concept of the data pipeline consists of the sensors sampling at regular intervals predefined in each nodes.
Data are stored locally and also put in a queue to be sent out via radio, 4G or Iridium. Data are then stored in a
PostgreSQL database in raw format. This table is accessible by http queries using the API wsn_client (restricted
access). Those data have no quality control and are stored as is. Currently under construction, data are then filtered,
flagged for quality, and aggregated into a table. Those data are accessible in JSON format via http request (restricted
access), or in the the case of the Svalbard network in netcdf4 format via the SIOS dataportal.

3.1 Download Data from SIOS Dataportal

[TBA]

3.2 Download Data Directly from the UiO Django App

3.2.1 Through Grafana

Data can be downloaded interactively via the Grafana interface. The Grafana portal requires login information.

1. go to the desired dashboard

2. define the time range

3. click on the panel title > more ... > export CSV

4. open your Download folder, here it is

7

https://github.com/spectraphilic/wsn_client
https://grafana.latice.eu/

Hive Wireless Sensor Network, Release alpha

3.2.2 Through http request

The Django database can be queried via http request, and return data organized in a json object. [write about the http
request structure/fields]

Python query function

You will need a Python 3.7 environment with the libraries requests, and pandas installed.

Assuming you have Anaconda 3 installed on your machine, type the following in your terminal to create a suitable
environment:

conda create --name uioData python=3.8
conda activate uioData
conda install pandas requests ipython

in case you use Jupyter Lab
conda install ipykernel
ipython kernel install --user --name=uioData

other python package of interest for data processing
conda install numpy matplotlib scikit-learn

cd to a good location to clone the WSN_CLIENT repository
git clone git@github.com:spectraphilic/wsn_client.git #uses SSH key to query github␣
→˓otherwise use https: git clone https://github.com/spectraphilic/wsn_client.git

pip install -e [pathTo]/wsn_client # point the pip install to where you cloned the␣
→˓wsn_client package

From there you will need to obtain a token from the database administrators, granting you access to the database via
http. You need to add the TOKEN as an environment variable. On Unix system (Linux and MacOS) add to .bashrc
file the line export WSN_TOKEN='xxxxx'. Replace the 'xxxxx' by the actual token. Then you should be able to
access the TOKEN in a python console (after restarting you terminal) with the following Python command: TOKEN =
os.getenv('WSN_TOKEN')

For Windows, you need to add the WSN_TOKEN to your environment variables. One way to do this is to right click
PC -> Properties -> Advanced System settings -> Environment Variables

8 Chapter 3. Database System Description

https://2.python-requests.org/en/master/
https://pandas.pydata.org/
https://www.anaconda.com/distribution/

Hive Wireless Sensor Network, Release alpha

Brief example to download data

from wsn_client import query
import datetime, os

start = datetime.datetime(2019, 6, 1)
end = datetime.datetime(2019, 6, 15)

df_kong = query.query('postgresql', name='sw-002', time__gte=start, time__lte=end,␣
→˓limit=2000000000000)
df_kong.head()

Selecting data (rows)

First choose the database to pull data from, choices are clickhouse (for raw data from finse/mobile flux), and postgresql
(for everything else). How data is selected depends on the database used. ClickHouse: query('clickhouse',
table='finseflux_Biomet', ...). Choices for table are: finseflux_Biomet, finseflux_StationStatus, mobile-
flux_Biomet and mobileflux_StationStatus. PostgreSQL:

query('postgresql', name='eddypro_Finseflux', ...)
query('postgresql', serial=0x1F566F057C105487, ...)
query('postgresql', source_addr_long=0x0013A2004105D4B6, ...)

Data from PostgreSQL can be queried by any metadata information, most often the name is all you need.

3.2. Download Data Directly from the UiO Django App 9

Hive Wireless Sensor Network, Release alpha

Selecting fields (columns)

If the fields parameter is not given, all the fields will be returned. This is only recommended to explore the available
columns, because it may be too slow and add a lot of work on the servers. So it is recommended to ask only for the
fields you need, it will be much faster. Examples:

query('clickhouse', table='finseflux_Biomet', fields=['LWIN_6_14_1_1_1', 'LWOUT_6_15_1_1_
→˓1'], ...)
query('postgresql', name='eddypro_Finseflux', fields=['co2_flux'], ...)

The field ‘time’ is always included, do not specify it. It’s a Unix timestamp (seconds since the Unix epoch). The rows
returned are ordered by this field.

Selecting a time range

Use the parameters time__gte and/or time__lte to define the time range of interest. The smaller the faster the query
will run. These parameters expect a datetime object. If the timezone is not specified it will be interpreted as local time,
but it’s probably better to explicitely use UTC. Example:

query(
'clickhouse', table='finseflux_Biomet',
fields=['LWIN_6_14_1_1_1', 'LWOUT_6_15_1_1_1'],
time__gte=datetime.datetime(2018, 3, 1, tzinfo=datetime.timezone.utc),
time__lte=datetime.datetime(2018, 4, 1, tzinfo=datetime.timezone.utc),
...

)

Limiting the number of rows

The limit parameter defines the maximum number of rows to return. If not given all selected rows will be returned.
Example:

query(
'clickhouse', table='finseflux_Biomet',
fields=['LWIN_6_14_1_1_1', 'LWOUT_6_15_1_1_1'],
time__gte=datetime.datetime(2018, 3, 1, tzinfo=datetime.timezone.utc),
time__lte=datetime.datetime(2018, 4, 1, tzinfo=datetime.timezone.utc),
limit=1000000,

)

Aggregates

Instead of returning every data point, it’s possible split the time range in intervals and return an aggregate of every
field over an interval. This can greatly reduce the amount of data returned, speeding up the query. For this purpose
pass the interval parameter, which defines the interval size in seconds. The interval is left-closed and right-open. The
time column returned is at the beginning of the interval. By default the aggregate function used is the average, pass the
interval_agg to specify a differente function. Example (interval size is 5 minutes):

10 Chapter 3. Database System Description

Hive Wireless Sensor Network, Release alpha

query(
'clickhouse', table='finseflux_Biomet',
fields=['LWIN_6_14_1_1_1', 'LWOUT_6_15_1_1_1'],
time__gte=datetime.datetime(2018, 3, 1, tzinfo=datetime.timezone.utc),
time__lte=datetime.datetime(2018, 4, 1, tzinfo=datetime.timezone.utc),
limit=1000000,
interval=60*5,
interval_agg='min',

)

If using postgresql the available functions are: avg, count, max, min, stddev, sum and variance. If using clickhouse any
aggregate function supported by ClickHouse can be used, see the clickhouse documentation page. Using aggregates
requires the fields paramater as well, it doesn’t work when asking for all the fields.

Intervaled data, but not aggregates

For certain use cases, it might be useful to get instant measurements for chosen interval, but not averaged or simi-
larly aggregated. An example could be to get every a temperature measurment every five minutes - but the instant
measurement, not an averaged number over that half hour.

The method depends on using clickhouse or postgresql.

For clickhouse, use the interval_agg=None argument. NB: no string qoutes around None, opposite to the how the
other arguments should be stated. When using =None, the query will return the first dataframe of that interval, where
there is data.

A slightly different result is given if one uses the interval_agg='any'. In this case, the frames contains the mea-
surement data from the same frames as when using =None, but the timestamp will not be the original timestamp of the
instant measurement, but (as with all interval_agg arguments), the left bound timestamp.

In the case of no missing dataframes and when querying for instance for every 5 minut instants data, the results of using
=None and ='any' are the same, and will have timestamps on every whole 5 minutes. If some dataframes are missing,
however, =None gives the original timestamp matching the data, whereas ='any' will give the rounded timestamp.

For postgresql, simply leave out the interval_agg of the query alltogether, while keeping interval.

Tags (PostgreSQL only)

With PostgreSQL only, you can pass the tags parameter to add metadata information to every row. Example:

query(
'postgresql', name='fw-001',
fields=['latitude', 'longitude'],
tags=['serial'],

)

In this example, the data from fw-001 may actually come from different devices, maybe the device was replaced at
some point. Using the tags parameter we can add a column with the serial number of the devices. Tags don’t work with
aggregated values.

3.2. Download Data Directly from the UiO Django App 11

https://clickhouse-docs.readthedocs.io/en/latest/agg_functions/

Hive Wireless Sensor Network, Release alpha

Returns

This function returns by default a Pandas dataframe. Use format='json' to return instead a Python dictionary, with
the data as was sent by the server, in a json format.

Debugging

With debug=True this function will print some information, useful for testing. Default is False.

Note on timestamps

The data are stored with timestamp in UTC timezone. If the timezone is not indicated in the Datetime object of the
query, by default the timestamp will be interpretated with your computer’s local timezone. It is therefore important
to indicate the timezone in which you would like the timestamp to be referenced in. Therefore it is good practice
to use UTC datetime object using the following syntax: datetime.datetime(2018, 7, 1,tzinfo=datetime.
timezone.utc).

Example script to download data via the Python 3.7 function

from wsn_client import query
import datetime, os

start = datetime.datetime(2018, 2, 1)
end = datetime.datetime(2018, 2, 15)
#start = end - datetime.timedelta(days=150)

Get data from CR6 station on Austfonna
serial_perm = 2264
'''
example of available variables
{'DT': 2.05, 'TCDT': 2.039, 'WS_ms': 5.862, 'RH_Avg': 100, 'RH_Max': 100, 'BP_mbar': 972, 'WindDir
→˓': 197, 'AirTC_Avg': -2.63, 'AirTC_Max': -2.494, 'AirTC_Min': -2.938, 'CG3Dn_Avg': -4.194,
→˓'CG3Up_Avg': -11.78, 'CM3Dn_Avg': 164.3, 'CM3Up_Avg': 196.9, 'WS_ms_S_WVT': 6.188, 'BP_mbar_
→˓test': 1029, 'WindDir_D1_WVT': 202.2, 'Batt_CR1000_Min': 14.76, 'PTemp_CR1000_Avg': 2.472}

'''
var_oi_perm = ['AirTC_Avg','RH_Avg']
df_perm = query.query('postgresql',fields=var_oi_perm, serial=serial_perm,

time__gte=start, time__lte=end, limit=2000000000000)
df_perm.head()

3.2.3 Matlab Query Example

This example query the database via the http API. The http request has the same structure as for Python. Here is an
example code to build it in Matlab and query the database via TOKEN authentification. The code returns the data into
a Matlab table.

% read Austfonna AWS data from database...
% TVS, March 2020
%%

(continues on next page)

12 Chapter 3. Database System Description

Hive Wireless Sensor Network, Release alpha

(continued from previous page)

clear
close all

%%%
% USER INPUT, edit here
% desired period
dt_begin = datenum(2020,1,1);
dt_end = datenum(2020,2,15);

% desired variables...
% there are possibilities for specifying individual variables, but if not
% specified, we read all.
% available vars:
% 'Ah_hi': 0, 'BattV': 0, 'LoadV': 0, 'V_Ref': 0, 'Ah_low': 0, 'Batt_I': 0, 'DS2_TC': 'NAN', 'DS2_WS
→˓': 'NAN', 'Load_I': 0, 'DS2_DIR': 'NAN', 'Hour_hi': 0, 'DS2_Gust': 'NAN', 'Hour_low': 0, 'Ah_tot_hi
→˓': 0, 'Ah_tot_low': 0, 'BattV_slow': 0, 'CNR1TC_Avg': 121072.6, 'DS2_U_mean': 'NAN', 'DS2_V_
→˓mean': 'NAN', 'dgpsStatus': 1, 'RegulatorTC': 0, 'Batt_CR6_Min': 13.05, 'SolarAzimuth': 201.4,
→˓ 'SunElevation': 8.26, 'PTemp_CR6_Avg': -19.89, 'modemStatus_Avg': 1}
% 'DT': 2.05, 'TCDT': 2.039, 'WS_ms': 5.862, 'RH_Avg': 100, 'RH_Max': 100, 'BP_mbar': 972,
→˓'WindDir': 197, 'AirTC_Avg': -2.63, 'AirTC_Max': -2.494, 'AirTC_Min': -2.938, 'CG3Dn_Avg': -4.
→˓194, 'CG3Up_Avg': -11.78, 'CM3Dn_Avg': 164.3, 'CM3Up_Avg': 196.9, 'WS_ms_S_WVT': 6.188, 'BP_
→˓mbar_test': 1029, 'WindDir_D1_WVT': 202.2, 'Batt_CR1000_Min': 14.76, 'PTemp_CR1000_Avg': 2.
→˓472

vars = ["AirTC_Avg","RH_Avg"]; % ATTENTION!! must be string array (use "" instead of '')
% vars = [];

%%%

% authentication
headerFields = {'Authorization', ['Token ', 'xxxxxxxxxx']}; % replace xxxxx by TOKEN
opt = weboptions('HeaderFields', headerFields);

% dt_off for UNIX timestamp
dt_off = datenum(1970,1,1);
secondsperday = 24*60*60;

% construct the HTTP request (specific for Austfonna (serial = int(2264))
if isempty(vars)

url = ['https://wsn.latice.eu/api/query/postgresql/',...
'?limit=2000000000000',...
'&serial%3Aint=2264',...
'&time__gte=',num2str((dt_begin-dt_off)*secondsperday),...
'&time__lte=',num2str((dt_end-dt_off)*secondsperday)];

else
for i=1:length(vars)

vs(i)=string(['&fields=',char(vars(i))]);
end

url = ['https://wsn.latice.eu/api/query/postgresql/',...
'?limit=2000000000000',...

(continues on next page)

3.2. Download Data Directly from the UiO Django App 13

Hive Wireless Sensor Network, Release alpha

(continued from previous page)

'&serial%3Aint=2264',...
'&time__gte=',num2str((dt_begin-dt_off)*86400),...
'&time__lte=',num2str((dt_end-dt_off)*86400),...
char(join(vs,''))];

end

tmp = webread(url,opt);
% convert to a matlab table
data = table;
for i=1:size(tmp.rows,2)

data(:,i)=table(tmp.rows(:,i));
data.Properties.VariableNames{i}=tmp.columns{i};

end
% add matlab date
data.matlabdate = data.time/secondsperday+dt_off;

14 Chapter 3. Database System Description

CHAPTER

FOUR

DATA ACCESS AND PROCESSING

15

Hive Wireless Sensor Network, Release alpha

16 Chapter 4. Data Access and Processing

CHAPTER

FIVE

SVALBARD NETWORK

Since 2019, two netorks have been installed in the area of Ny-Ålesund. A first one on Kongsvegen, and a second one
on Midtre-Løvenbreen. Both network have different data exit system. 1) Kongsvegen data are sent via a 4G relay
located on the Telenor tower at Vegvaktaren. 2) Midtre-Løvenbreen data are sent to a gateway connected to internet in

Ny-Ålesund at the Sverdrup station.

source/images/fig_map_WSN_new_alesunds.png

17

Hive Wireless Sensor Network, Release alpha

5.1 Stations Available

5.1.1 Midtre Løvenbreen

Midtre Løven glacier sub-netwrok as of 2021:

(Table of stations, with version, loc, db_name, glacier_name, etc)

18 Chapter 5. Svalbard Network

Hive Wireless Sensor Network, Release alpha

5.1.2 Kongsvegen

Kongsvegen glacier sub network as of 2021:

(Table of stations, with version, loc, db_name, glacier_name, etc)

5.1. Stations Available 19

Hive Wireless Sensor Network, Release alpha

20 Chapter 5. Svalbard Network

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

21

	Introduction
	Deployed Network
	Finse, Norway
	Norwegian Permafrost Borehole
	Ny-Ålesund, Svalbard Archipelago

	Financial Support

	Hardware Description
	Version 1, 2019
	Version 2, 2021
	Sensors

	Database System Description
	Download Data from SIOS Dataportal
	Download Data Directly from the UiO Django App
	Through Grafana
	Through http request
	Python query function
	Brief example to download data
	Selecting data (rows)
	Selecting fields (columns)
	Selecting a time range
	Limiting the number of rows
	Aggregates
	Intervaled data, but not aggregates
	Tags (PostgreSQL only)
	Returns
	Debugging

	Note on timestamps
	Example script to download data via the Python 3.7 function

	Matlab Query Example

	Data Access and Processing
	Svalbard Network
	Stations Available
	Midtre Løvenbreen
	Kongsvegen

	Indices and tables

